About
Alberto Cano is the Associate Vice President for Research Computing and an Associate Professor in the Department of Computer Science at Virginia Tech, United States, where he leads the Advanced Research Computing unit. His research is focused on machine learning, big data, data streams, concept drift, continual learning, GPUs and distributed computing.
Education
- Ph.D. in Computer Science, University of Granada, Spain2014
- M.Sc. in Intelligent Systems, University of Córdoba, Spain2013
- M.Sc. in Soft Computing and Intelligent Systems, University of Granada, Spain2011
- B.Sc. in Computer Science, University of Córdoba, Spain2010
- B.Sc. in Computer Engineering, University of Córdoba, Spain2008
Research
Research interests
- Machine learning: classification, multi-label learning, imbalanced learning, ensemble learning
- Data streams: self-adaptive learning, concept drift, explainable stream learning
- Scalability: large-scale data, big data, parallel and distributed high-performance computing, GPUs
- Metaheuristics: evolutionary machine learning, genetic programming, nature-inspired optimization
Funding
- 2024-2025Expanding research computing and AI at the HPRC
Higher Education Equipment Trust Fund, State Council of Higher Education for Virginia, PI, $744,038. - 2024-2027Enhancing Multidisciplinary STEM Undergraduate Education through Living Labs
National Science Foundation, Co-PI, $750,000. - 2024-2026Turning Life Science Research into New Products and Businesses that Improve the Human Condition and Accelerate Virginia's Economy
Go Virginia, State of Virginia, Co-PI, $5M. - 2024-2026Cross Reality (XR) Arts & Technology Empowered by Generative and Emotion AI
Korea Creative Content Agency, PI, $260,000. - 2024-2025Data Ecologies: A Transdisciplinary Approach to Data Centers and Data Justice
VCU Institute for Sustainable Energy and Environment, Co-PI, $100,000. - 2023-2026MRI: Track 1 Acquisition of NVIDIA DGX H100 GPU system for research and education at VCU
National Science Foundation, PI, $299,621. - 2023-2024SentimentVoice: Integrating emotion AI and VR in Performing Arts
Commonwealth Cyber Initiative (CCI), Co-PI, $25,000. - 2022-2023HPRC research computing clusters
Higher Education Equipment Trust Fund, State Council of Higher Education for Virginia, PI, $1,442,280. - 2022-2023Multi-Objective Optimization of Inlet Nozzle Design using Artificial Intelligence for Single Tank Thermal Energy Storage
VCU Accelerate, Co-PI, $100,000. - 2020-2022Machine learning for the supply chain management
Hamilton Beach, PI, $200,000. - 2019-2020Real-time price monitoring tool for business intelligence
Hamilton Beach, PI, $50,000. - 2018-2019Hate Speech Detection on Amazon Reviews using Data Stream Mining on Spark and AWS
Amazon Machine Learning Awards, PI, $25,000 cash + $50,000 AWS credits. - 2018-2019Interpretable Data Mining Models for Early Prediction of Student Performance and Dropout
VCU Presidential Research Quest Fund, PI, $50,000.
Publications
Journal articles
-
Hoeffding adaptive trees for multi-label classification on data streams
A. Esteban, A. Cano, A. Zafra, and S. Ventura
Knowledge-Based Systems, 304, 112561, 2024. -
Improved KD-tree based imbalanced big data classification and oversampling for MapReduce platforms
W. Sleeman, M. Roseberry, P. Ghosh, A. Cano, and B. Krawczyk
Applied Intelligence, 54, 12558-12575, 2024. -
A comprehensive analysis of concept drift locality in data streams
G. Aguiar and A. Cano
Knowledge-Based Systems, 289, 111535, 2024. -
Spatio-temporal visual learning for home-based monitoring
Y. Djenouri, A. N. Belbachir, A. Cano, and A. Belhadi
Information Fusion, 101, 101984, 2024. -
Dynamic budget allocation for sparsely labeled drifting data streams
G. Aguiar and A. Cano
Information Sciences, 654, 119821, 2024. -
A survey on learning from imbalanced data streams: taxonomy, challenges, empirical study, and reproducible experimental framework
G. Aguiar, B. Krawczyk, and A. Cano
Machine Learning, 113, 4165-4243, 2024. -
Meta-learning for dynamic tuning of active learning on stream classification
V. Eiji, A. Cano, and S. Barbon
Pattern Recognition, 138, 109359, 2023. -
ROSE: Robust Online Self-Adjusting Ensemble for Continual Learning on Imbalanced Drifting Data Streams
A. Cano and B. Krawczyk
Machine Learning, 111, 2561-2599, 2022. -
Adaptive Ensemble of Self-Adjusting Nearest Neighbor Subspaces for Multi-Label Drifting Data Streams
G. Alberghini, S. Barbon, and A. Cano
Neurocomputing, 481, 228-248, 2022. -
Analysis and forecasting of rivers pH level using Deep Learning
A. Srivastava and A. Cano
Progress in Artificial Intelligence, 11, 181-191, 2022. -
An Ontology Matching Approach for Semantic Modeling: A Case Study in Smart Cities
Y. Djenouri, H. Belhadi, K. Akli-Astouati, A. Cano, and J. Chun-Wei Lin
Computational Intelligence, 38(3), 876-902, 2022. -
Hybrid Group Anomaly Detection for Sequence Data: Application to Trajectory Data Analytics
A. Belhadi, Y. Djenouri, G. Srivastava, A. Cano, and J. Chun-Wei Lin
IEEE Transactions on Intelligent Transportation Systems, 23(7), 9346-9357, 2022. -
Machine learning techiniques application in glioma interactome study: a multicentric analysis of 100 patients
M.L. Gandia-Gonzalez, A. Cano, et al.
Brain and Spine, vol. 1, sup. 2, 100552, 2021. -
Time Series Segmentation Based on Stationarity Analysis to Improve New Samples Prediction
A. Petri, B. Bogaz, A. Cano, and S. Barbon
Sensors, 21(21), art. 7333, 2021. -
Self-Adjusting k Nearest Neighbors for Continual Learning from Multi-Label Drifting Data Streams
M. Roseberry, B. Krawczyk, Y. Djenouri, and A. Cano
Neurocomputing, 442, 10-25, 2021. -
Kappa Updated Ensemble for Drifting Data Stream Mining
A. Cano and B. Krawczyk
Machine Learning, 109(1), 175-218, 2020. -
Distributed multi-label feature selection using individual mutual information measures
J. Gonzalez-Lopez, S. Ventura, and A. Cano
Knowledge-Based Systems, vol. 188, 105052, 2020. -
When the Decomposition Meets the Constraint Satisfaction Problem
Y. Djenouri, D. Djenouri, Z. Habbas, J. Lin, T. Michalak, and A. Cano
IEEE Access, vol. 8, 207034-207043, 2020. -
A Two-Phase Anomaly Detection Model for Secure Intelligent Transportation Ride-Hailing Trajectories
A. Belhadi, Y. Djenouri, G. Srivastava, D. Djenouri, A. Cano, and J. Lin
IEEE Transactions on Intelligent Transportation Systems, 22(7), 4496-4506, 2020. -
A Data-Driven Approach for Twitter Hashtag Recommendation
A. Belhadi, Y. Djenouri, J. Lin, and A. Cano
IEEE Access, vol. 8, 79182-79191, 2020. -
Trajectory Outlier Detection: Algorithms, Taxonomies, Evaluation and Open Challenges
A. Belhadi, Y. Djenouri, J. Lin, and A. Cano
ACM Transactions on Management Information Systems, 11(30), art. 16, 2020. -
Exploring Pattern Mining Algorithms for Hashtag Retrieval Problem
A. Belhadi, Y. Djenouri, J. Lin, C. Zhang, and A. Cano
IEEE Access, vol. 8, 10569-10583, 2020. -
A General-Purpose Distributed Pattern Mining System
A. Belhadi, Y. Djenouri, J. Lin, and A. Cano
Applied Intelligence, vol. 50, 2647-2662, 2020. -
Blocking Self-avoiding Walks Stops Cyber-epidemics: A Scalable GPU-based Approach
H.T. Nguyen, A. Cano, V. Tam, and T.N. Dinh
IEEE Transactions on Knowledge and Data Engineering, 32(7), 1263-1275, 2020. -
Distributed selection of continuous features in multi-label classification using mutual information
J. Gonzalez-Lopez, S. Ventura, and A. Cano
IEEE Transactions on Neural Networks and Learning Systems, 31(7), 2280-2293, 2020. -
PSIONplusm Server for Accurate Multi-Label Prediction of Ion Channels and Their Types
J. Gao, H. Wei, A. Cano, and L. Kurgan
Biomolecules, 10(6), art. 876, 2020. -
Multi-label Punitive kNN with Self-Adjusting Memory for Drifting Data Streams
M. Roseberry, B. Krawczyk, and A. Cano
ACM Transactions on Knowledge Discovery from Data, 13(6), art. 60, 2019. -
Evolving Rule-Based Classifiers with Genetic Programming on GPUs for Drifting Data Streams
A. Cano and B. Krawczyk
Pattern Recognition, vol. 87, 248-268, 2019. -
Metabolomics and molecular profiling in glioma patients: an interactomic approach
A.C. Fuentes-Fayos, M.L. Gandia-Gonzalez, A. Cano, et al.
Neuro-Oncology, 21(3), 64-65, 2019. -
Interpretable Multi-view Early Warning System adapted to Underrepresented Student Populations
A. Cano and J.D. Leonard
IEEE Transactions on Learning Technologies, 12(2), 198-211, 2019. -
A Survey on Urban Traffic Anomalies Detection Algorithms
Y. Djenouri, A. Belhadi, J. Lin, D. Djenouri, and A. Cano
IEEE Access, vol. 7, 12192-12205, 2019. -
Adapted k Nearest Neighbors for Detecting Anomalies on Spatio-Temporal Traffic Flow
Y. Djenouri, A. Belhadi, J. Lin, and A. Cano
IEEE Access, vol. 7, 10015-10027, 2019. -
Speeding up k-Nearest Neighbors Classifier for Large-Scale Multi-Label Learning on GPUs
P. Skryjomski, B. Krawczyk, and A. Cano
Neurocomputing, vol. 354, 10-19, 2019. -
Exploiting GPU and Cluster Parallelism in Single Scan Frequent Itemset Mining
Y. Djenouri, D. Djenouri, A. Belhadi, and A. Cano
Information Sciences, vol. 496, 363-377, 2019. -
A survey on graphic processing unit computing for large-scale data mining
A. Cano
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(1), e1232, 2018. -
Distributed Nearest Neighbor Classification for Large-Scale Multi-label Data on Spark
J. Gonzalez-Lopez, S. Ventura, and A. Cano
Future Generation Computer Systems, vol. 87, 66-82, 2018. -
OLLAWV: OnLine Learning Algorithm using Worst-Violators
G. Melki, V. Kecman, S. Ventura, and A. Cano
Applied Soft Computing, vol. 66, 384-393, 2018. -
MIRSVM: Multi-Instance Support Vector Machine with Bag Representatives
G. Melki, A. Cano, and S. Ventura
Pattern Recognition, vol. 79, 228-241, 2018. -
Online Ensemble Learning with Abstaining Classifiers for Drifting and Noisy Data Streams
B. Krawczyk and A. Cano
Applied Soft Computing, vol. 68, 677-692, 2018. -
Parallelization Strategies for Markerless Human Motion Capture
A. Cano, E. Yeguas-Bolivar, R. Muñoz-Salinas, R. Medina-Carnicer, and S. Ventura
Journal of Real-Time Image Processing, 14(2), 453-467, 2018. -
A locally weighted learning method based on a data gravitation model for multi-target regression
O. Reyes, A. Cano, H. Fardoun, and S. Ventura
International Journal of Computational Intelligence Systems, 11(1), 282-295, 2018. -
An ensemble approach to multi-view multi-instance learning
A. Cano
Knowledge-Based Systems, vol. 136, 46-57, 2017. -
Extremely High-dimensional Optimization with MapReduce: Scaling Functions and Algorithm
A. Cano, C. Garcia, and S. Ventura
Information Sciences, vol. 415-416, 110-127, 2017. -
Multi-Target Support Vector Regression Via Correlation Regressor Chains
G. Melki, A. Cano, V. Kecman, and S. Ventura
Information Sciences, vol. 415-416, 53-69, 2017. -
Multi-Objective Genetic Programming for Feature Extraction and Data Visualization
A. Cano, S. Ventura, and K.J. Cios
Soft Computing, 21(8), 2069-2089, 2017. -
Discovering Useful Patterns from Multiple Instance Data
J.M. Luna, A. Cano, V. Sakalauskas, and S. Ventura
Information Sciences, vol. 357, 23-38, 2016. -
LAIM discretization for multi-label data
A. Cano, J.M. Luna, E.L. Gibaja, and S. Ventura
Information Sciences, vol. 330, 370-384, 2016. -
ur-CAIM: improved CAIM discretization for unbalanced and balanced data
A. Cano, D.T. Nguyen, S. Ventura and K.J. Cios
Soft Computing, 20(1), 173-188, 2016. -
Speeding-up Association Rule Mining with Inverted Index Compression
J.M. Luna, A. Cano, M. Pecheniskiy, and S. Ventura
IEEE Transactions on Cybernetics, 46(12), 3059-3072, 2016. -
Early Dropout Prediction using Data Mining: A Case Study with High School Students
C. Márquez-Vera, A. Cano, C. Romero, A. Yousef Mohammad, H. Mousa Fardoun, and S. Ventura
Expert Systems, 33(1), 107-124, 2016. -
A Classification Module for Genetic Programming Algorithms in JCLEC
A. Cano, J.M. Luna, A. Zafra, and S. Ventura
Journal of Machine Learning Research, vol. 16, 491-494, 2015. -
Speeding up multiple instance learning classification rules on GPUs
A. Cano, A. Zafra, and S. Ventura
Knowledge and Information Systems, 44(1), 127-145, 2015. -
Scalable CAIM discretization on multiple GPUs using concurrent kernels
A. Cano, S. Ventura, and K.J. Cios
Journal of Supercomputing, 69(1), 273-292, 2014. -
Parallel evaluation of Pittsburgh rule-based classifiers on GPUs
A. Cano, A. Zafra, and S. Ventura
Neurocomputing, vol. 126, 45-57, 2014. -
Predicting student failure at school using genetic programming and different data mining approaches with high dimensional and imbalanced data
C. Márquez-Vera, A. Cano, C. Romero, and S. Ventura
Applied Intelligence, 38 (3), 315-330, 2013. -
High Performance Evaluation of Evolutionary-Mined Association Rules on GPUs
A. Cano, J.M. Luna, and S. Ventura
Journal of Supercomputing, 66(3), 1438-1461, 2013. -
An Interpretable Classification Rule Mining Algorithm
A. Cano, A. Zafra, and S. Ventura
Information Sciences, vol. 240, 1-20, 2013. -
Parallel Multi-Objective Ant Programming for Classification Using GPUs
A. Cano, J.L. Olmo, and S. Ventura
Journal of Parallel and Distributed Computing, 73 (6), 713-728, 2013. -
Weighted Data Gravitation Classification for Standard and Imbalanced Data
A. Cano, A. Zafra, and S. Ventura
IEEE Transactions on Cybernetics, 43 (6) pages 1672-1687, 2013. -
Speeding up the evaluation phase of GP classification algorithms on GPUs
A. Cano, A. Zafra, and S. Ventura
Soft Computing, 16 (2), 187-202, 2012.
Edited books
-
Social Media and Machine Learning
A. Cano
InTech, ISBN 978-1-78984-028-5, 2020. -
Big Data on Real-World Applications
S. Ventura, J. M. Luna, and A. Cano
InTech, ISBN 978-953-51-2490-0, 2016.
Book chapters
-
Genetic Programming for Mining Association Rules in Relational Database Environments
J.M. Luna, A. Cano and S. Ventura
Handbook of Genetic Programming Applications, Springer, ISBN 978-3-319-20882-4, 2015. -
An Evolutionary Self-Adaptive Algorithm for Mining Association Rules. In Data Mining: Principles
J.M. Luna, A. Cano and S. Ventura
Applications and Emerging Challenges, Nova Publishers, ISBN 978-1-63463-770-1, 2015.
International conference contributions
-
Vision-based Spatiotemporal Learning for Human Activity Recognition
Y. Djenouri, G. Srivastava, A. Nabil, and A. Cano
IEEE International Joint Conference on Neural Networks, 2024. -
Enhancing Concept Drift Detection in Drifting and Imbalanced Data Streams through Meta-Learning
G. Aguiar and A. Cano
IEEE International Conference on Big Data, 2648-2657, 2023. -
Aging and rejuvenating strategies for fading windows in multi-label classification on data streams
M. Roseberry, S. Dzeroski, A. Bifet and A. Cano
38th ACM/SIGAPP Symposium On Applied Computing, 390-397, 2023. -
An active learning budget-based oversampling approach for partially labeled multi-class imbalanced data streams
G. Aguiar and A. Cano
38th ACM/SIGAPP Symposium On Applied Computing, 382-389, 2023. -
An explainable classifier based on genetically evolved graph structures
J. Bertini and A. Cano
IEEE Congress on Evolutionary Computation, 2022. -
Locally Linear Support Vector Machines for Imbalanced Data Classification
B. Krawczyk and A. Cano
Pacific-Asia Conference on Knowledge Discovery and Data Mining, 616-628, 2021. -
An Endocrine and metabolic interactomic approach to identify novel diagnostic/prognostic biomarkers and therapeutic targets in gliomas
J. Perez, [...], A. Cano, et. al.
22nd European Congress of Endocrinology, 2020. -
Active Learning with Abstaining Classifiers for Imbalanced Drifting Data Streams
L. Korycki, A. Cano, and B. Krawczyk
IEEE BigData, 2334-2343, 2019. -
Adaptive ensemble active learning for drifting data stream mining
B. Krawczyk and A. Cano
International Joint Conference on Artificial Intelligence, 2763-2771, 2019. -
ARFF data source library for distributed single/multiple instance, single/multiple output learning on Apache Spark
J. Gonzalez-Lopez, S. Ventura, and A. Cano
International Conference on Computational Science, 173-179, 2019. -
Speeding up Classifier Chains in Multi-Label Classification
J.M. Moyano, E. Gibaja, S. Ventura, and A. Cano
International Conference on Internet of Things, Big Data and Security, 29-37, 2019. -
Multi-label kNN Classifier with Self Adjusting Memory for Drifting Data Streams
M. Roseberry and A. Cano
Second International Workshop on Learning with Imbalanced Domains: Theory and Applications, LIDTA@PKDD/ECML, PMLR 94:23-37, 2018. -
Learning classification rules with differential evolution for high-speed data stream mining on GPUs
A. Cano and B. Krawczyk
IEEE Congress on Evolutionary Computation, 197-204, 2018. -
Selecting local ensembles for multi-class imbalanced data classification
B. Krawczyk, A. Cano, and M. Wozniak
International Joint Conference on Neural Networks, 1848-1855, 2018. -
Large-scale multi-label ensemble learning on Spark
J. Gonzalez-Lopez, A. Cano, and S. Ventura
IEEE Trustcom/BigDataSE/ICESS, 893-900, 2017. -
Parsing MetaMap Files in Hadoop
A. Olex, B. McInnes, and A. Cano
American Medical Informatics Association Symposium, 2017. -
Sentiment Classification from Multi-Class Imbalanced Twitter Data using Binarization
B. Krawczyk, B. McInnes, and A. Cano
12th International Conference on Hybrid Artificial Intelligent Systems, Lecture Notes in Computer Science, vol 10334, 26-37, 2017. -
100 Million Dimensions Large-Scale Global Optimization Using Distributed GPU Computing
A. Cano and C. Garcia-Martinez
IEEE Congress on Evolutionary Computation, 3566-3573, 2016. -
A Data Structure to Speed-Up Machine Learning Algorithms on Massive Datasets
F. Padillo, J.M. Luna, A. Cano, and S. Ventura
11th International Conference on Hybrid Artificial Intelligent Systems. Lecture Notes in Computer Science, vol 9648, 365-376, 2016. -
Synthesis of In-Place Iterative Sorting Algorithms Using GP: A Comparison Between STGP, SFGP, G3P and GE
D. Pinheiro, A. Cano and S. Ventura
17th Portuguese Conference on Artificial Intelligence. Lecture Notes in Computer Science, vol 9273, 305-310, 2015. -
GPU-parallel subtree interpreter for genetic programming
A. Cano and S. Ventura
Conference on Genetic and Evolutionary Computation, 887-894, 2014. -
Classification Rule Mining with Iterated Greedy
J.A. Pedraza, C. Garcia-Martinez, A. Cano, and S. Ventura
9th International Conference on Hybrid Artificial Intelligent Systems (HAIS). Lecture Notes in Computer Science, 8480 LNCS:585-596, 2014. -
A Grammar-Guided Genetic Programming Algorithm for Multi-Label Classification
A. Cano, A. Zafra, E.L. Gibaja, and S. Ventura
16th European Conference on Genetic Programming, EuroGP'13. Lecture Notes in Computer Science, vol 7831, 217-228, 2013. -
Binary and Multiclass Imbalanced Classification Using Multi-Objective Ant Programming
J.L. Olmo, A. Cano, J.R. Romero, and S. Ventura
12th International Conference on Intelligent Systems Design and Applications, ISDA'12, 70-76, 2012. -
An EP algorithm for learning highly interpretable classifiers
A. Cano, A. Zafra, and S. Ventura
11th International Conference on Intelligent Systems Design and Applications, ISDA'11, 325-330, 2011. -
A parallel genetic programming algorithm for classification
A. Cano, A. Zafra, and S. Ventura
6th International Conference on Hybrid Artificial Intelligent Systems (HAIS). Lecture Notes in Computer Science, 6678 LNAI(PART 1):172-181, 2011. -
JCLEC meets WEKA!
A. Cano, J.M. Luna, J.L. Olmo, and S. Ventura
6th International Conference on Hybrid Artificial Intelligent Systems (HAIS). Lecture Notes in Computer Science, 6678 LNAI(PART 1):388-395, 2011. -
Solving classification problems using genetic programming algorithms on GPUs
A. Cano, A. Zafra, and S. Ventura
5th International Conference on Hybrid Artificial Intelligent Systems (HAIS). Lecture Notes in Computer Science, 6077 LNAI(PART 2):17-26, 2010. -
On-site forest fire smoke detection by low-power autonomous vision sensor
J. Fernández-Berni, R. Carmona-Galán, L. Carranza-González, A. Cano-Rojas, J. F. Martínez-Carmona, Á. Rodríguez-Vázquez, and S. Morillas-Castillo
VI International Conference on Forest Fire Research, page 94, 2010.
Tutorials in international conferences
-
Learning from imbalanced data streams
A. Cano
IEEE World Congress on Computational Intelligence, 2024. -
Big Data Stream Mining
B. Krawczyk and A. Cano
IEEE International Conference on Big Data, 2020. -
Learning from non-stationary data streams
B. Krawczyk and A. Cano
IEEE International Conference on Data Science and Advanced Analytics, 2019.
Research & teaching and innovation publications in Spanish
-
Optimización con 100 millones de variables reales sobre múltiples unidades de procesamiento gráfico
A. Cano and C. Garcia-Martinez
XI Congreso Español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados (MAEB), 377-386, 2016. -
Autómatas celulares y aplicaciones
A. Cano and A. Rojas
UNIÓN. Revista Iberoamericana de Educación Matemática, (46):33-48, 2016. -
Evaluación distribuida transparente para algoritmos evolutivos en JCLEC
F. Ibáñez A. Cano, and S. Ventura
II Jornadas de Algoritmos Evolutivos y Metaheurísticas (XVI CAEPIA), 231-240, 2015. -
Diseño Automático de Multi-Clasificadores Basados en Proyecciones de Etiquetas
J.M. Moyano, E.L. Gibaja, A. Cano, J.M. Luna, and S. Ventura
II Jornadas de Fusión de la Información y ensembles (XVI CAEPIA), 355-366, 2015. -
Algoritmo evolutivo para optimizar ensembles de clasificadores multi-etiqueta
J.M. Moyano, E.L. Gibaja, A. Cano, J.M. Luna, and S. Ventura
X Congreso Español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados (MAEB), 219-225, 2015. -
Cómo compartir un secreto usando sistemas de ecuaciones lineales
A. Cano, J.M. Luna, and A. Rojas
Suma, (79):33-39, 2015. -
Programación Automática con Colonias de Hormigas Multi-Objetivo en GPUs
A. Cano, J.L. Olmo, and S. Ventura
IX Congreso Español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados (MAEB), 288-297, 2013. -
Parallel Data Mining Algorithms on GPUs
A. Cano, A. Zafra, and S. Ventura
Doctoral Consortium de la Conferencia de la Asociacion Española para la Inteligencia Artificial (CAEPIA), 1603-1606, 2013. -
Modelo gravitacional para clasificación
A. Cano, J.M. Luna, A. Zafra, and S. Ventura
VIII Congreso Español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados (MAEB), 63-70, 2012. -
Programación con Hormigas Multi-Objetivo para la Extracción de Reglas de Clasificación
J.L. Olmo, A. Cano, J.R. Romero, and S. Ventura
VIII Congreso Español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados (MAEB), 219-226, 2012. -
Motivando el aprendizaje del Álgebra lineal a través de sus aplicaciones: la división de secretos
A. Rojas and A. Cano
XX Congreso universitario de innovación educativa en las enseñanzas técnicas, 2012. -
Interpolación polinómica y la división de secretos
A. Rojas and A. Cano
XIV Congreso de Enseñanza y Aprendizaje de las Matemáticas, 2012. -
Cifrado de imágenes y matemáticas
A. Rojas and A. Cano
TE&ET. Revista Iberoamericana de Tecnología en Educación y Educación en Tecnología, (6):30-37, 2011. -
Una clase de aritmética modular, matrices y cifrado para ingeniería
A. Rojas and A. Cano
UNIÓN. Revista Iberoamericana de Educación Matemática, 1(25):89-108, 2011. -
Speeding up evolutionary learning algorithms using GPUs
A. Cano, A. Zafra, and S. Ventura
ESTYLF 2010 XV Congreso Español sobre Tecnologías y Lógica Fuzzy, 229-234, 2010. -
Trabajando con imágenes digitales en clase de matemáticas
A. Rojas and A. Cano
La Gaceta de la Real Sociedad Matemática Española, 2(13):317-336, 2010. -
Recursos didácticos en el grado en ingeniería informática para el aprendizaje de matemáticas a través de la programación de ordenadores
E. Gibaja, A. Zafra, M. Luque, and A. Cano
II Jornadas Andaluzas de Informática, 90-95, 2011. -
Cifrado de imágenes y reparto de secretos en clase de matemáticas
A. Rojas and A. Cano
XV Jornadas para el Aprendizaje y Enseñanza de las Matemáticas, 2011. -
Motivando el aprendizaje del álgebra lineal a través de sus aplicaciones
A. Rojas and A. Cano
II Jornadas sobre Innovación Docente y Adaptación al EEES en las Titulaciones Técnicas, 2011. -
Álgebra lineal y cifrado de imágenes
A. Rojas and A. Cano
CEAM 2010 XIII Congreso de enseñanza y aprendizaje de las matemáticas, 2010. -
Reparto de secretos usando un sudoku
A. Cano
CEAM 2010 XIII Congreso de enseñanza y aprendizaje de las matemáticas, 2010. -
Coloreado de imágenes y sistemas de ecuaciones lineales
A. Cano and A. Rojas
CEAM 2010 XIII Congreso de enseñanza y aprendizaje de las matemáticas, 2010. -
Fotomontajes de imágenes digitales y sistemas de ecuaciones lineales
A. Cano and A. Rojas
CEAM 2010 XIII Congreso de enseñanza y aprendizaje de las matemáticas, 2010. -
Descomposición en valores singulares e imágenes
A. Rojas and A. Cano
CEAM 2010 XIII Congreso de enseñanza y aprendizaje de las matemáticas, 2010. -
Álgebra lineal, secretos e imágenes
A. Rojas and A. Cano
CUIEET 2010 XVIII Congreso universitario de innovación educativa en las enseñanzas técnicas, 2010. -
Innovación en clase de matemáticas
A. Rojas and A. Cano
CUIEET 2010 XVIII Congreso universitario de innovación educativa en las enseñanzas técnicas, 2010. -
Descomposición en valores singulares e imágenes
A. Cano and A. Rojas
I Jornadas Andaluzas de Informática, 2009. -
Aplicaciones del álgebra lineal en la vida cotidiana
A. Rojas and A. Cano
XIV Jornadas para el Aprendizaje y Enseñanza de las Matemáticas, 2009 -
Adecuación de la red WiFi para cumplimiento de la normativa y permitir acceso a internet a los pacientes
R. Molina, J. Jiménez, C. Sánchez, and A. Cano
XI Congreso Nacional de Informática de la Salud, 2008.
Professional Services
Editor in journals
- Area Editor of Information Fusion2022-date
- Associate Editor of PeerJ Computer Science2020-date
- Associate Editor of Applied Intelligence2019-date
- Associate Editor of IEEE Access2018-date
Reviewer in journals (selection)
- Applied Intelligence
- IEEE Access
- Soft Computing
- Expert Systems with Applications
- IEEE Transactions on Cybernetics
- Information Sciences
- Neural Computing and Applications
- Knowledge-Based Systems
- Neurocomputing
- Machine Learning
- IEEE Transactions on Neural Networks and Learning Systems
- IEEE Transactions on Evolutionary Computation
- Knowledge and Information Systems
- ACM Transactions on Knowledge Discovery from Data
- IEEE Transactions on Knowledge and Data Engineering
- Pattern Recognition
Conference organization (selection)
- IEEE International Conference on Omni-layer Intelligent Systems. Track: Artificial Intelligence, Machine Learning, and Analytics2022
- IEA/AIE. Special Session Lifelong and Continual Learning on Data Streams: Algorithms and Applications2022
- Federated Conference on Computer Science and Information Systems. Track 4: Advances in Information Systems and Technologies2021-2023
- IEA/AIE. Special Session on Data Stream Mining: Algorithms and Applications2021
- IEEE International Symposium on Computer-Based Medical Systems2019
- IEEE International Conference on Big Data. Special Track on Real-Time Big Data Analytics2018
- International Conference on Intelligent Systems Design and Applications2011
Technical program committee in conferences (selection)
- International Conference on Intelligent Systems Design and Applications
- IEEE International Conference on Big Data Intelligence and Computing
- IEEE Congress on Evolutionary Computation
- International Conference on Educational Data Mining
- International Joint Conference on Neural Networks
- International Conference on Computational Collective Intelligence
- International Conference on Soft Computing and Pattern Recognition
- Federated Conference on Computer Science and Information Systems
- International Conference on Hybrid Artificial Intelligence Systems
- IEEE International Conference on Big Data
- International Conference on Computational Science
- International Conference on Discovery Science
- IEEE World Congress on Computational Intelligence
- International Joint Conference on Artificial Intelligence
- ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
Funding proposal reviewer
- National Science Foundation, United StatesAnnually
- Fonds Wetenschappelijk Onderzoek, Belgium2018
- Chilean National Science and Technology, Chile2018
- Israeli Science Foundation, Israel2017
- National Centre of Science and Technology Evaluation, Kazakhstan2017
Memberships
- IEEE Senior Member2019-date
- IEEE Member2009-2019
- ACM Senior Member2023-date
- ACM Member2016-2023
Teaching
- (VCU) CMSC 508 - Databases2016-date
- (VCU) CMSC 603 - High Performance Distributed Systems2016-date
- (UCO) Graduate Teaching Assistant for Operating Systems2013-2015
- (UCO) Graduate Teaching Assistant for Databases2013-2015